Highlights

Trimethyltin Mediated Covalent Gold-Carbon Bond Formation


 


 


Spectroscopic evidence of C-Au bond formation, responsible for the “electron gateway” state, is shown in the process of TrimethylTin break-up on gold.


A.Batra et al., J. Am. Chem. Soc., 2014, 136 (36), pp 12556–12559

Identification of Coexisting Graphene Structures on Ni(111)

CVD growth on nickel is considered one of the most interesting routes for graphene large-scale production. Although the atomic structure of graphene on Ni(111) has been thoroughly investigated, and several possible configurations proposed, their stability and ordering in energy are still under debate. Moreover, a direct microscopic experimental evidence for the coexistence of all proposed structures, and an atomic level description of their transition regions are still missing.

Control of spin-wave transmission by a programmable domain wall

Active manipulation of spin waves is essential for the development of magnon-based technologies. Here, we demonstrate programmable spin-wave filtering by resetting the spin structure of pinned 90° Néel domain walls in a continuous CoFeB film with abrupt rotations of uniaxial magnetic anisotropy. Using micro-focused Brillouin light scattering and micromagnetic simulations, we show that broad 90° head-to-head or tail-to-tail magnetic domain walls are transparent to spin waves over a broad frequency range.

A biophysical method to study DNA nanosequences for antitumor therapy

The G-quadruplex structural motif of DNA came to be known as a new and stimulating target for anticancer drug discovery. The human telomeric G-quadruplex consists of guanine-rich single strand repeats, which can fold into higher-order DNA structures. Small molecules that interact with the G-quadruplex structures in a selective way may serve as potential therapeutic agents, and have gained impressive interest in recent years.

Pages